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Abstract – In order to reveal the possible correlation between
the level of myocardial electrical instability assessed at Holter
monitoring and certain ECG parameters characterizing
ventricular repolarization 24-hours ECG recordings were
analyzed  in 91 patients with different grades of ventricular
arrhythmias.
The following parameters were calculated: RT-interval (RT)
duration and variability, RT apex interval (RTa) duration and
variability, areas of the first and second half of T-wave (S1, S2)
and maximal rise and fall slopes of T-wave (k1, k2). An
original signal processing algorithm for ECG was developed
for that purpose.
The results of the study suggest that complex analysis of
certain T-wave parameters, as well as RT interval variability
can be a useful tool for identification of patients at increased
risk of sudden death.
Keywords – Sudden cardiac death, T-wave morphology, RT
interval variability

I. INTRODUCTION

Sudden cardiac death (SD) is one of the major problems
in modern cardiology. SD accounts for about an half of all
deaths in most common cardiac diseases, and its occurrence
in the whole population is 2 per thousand a year. Numerous
invasive and non-invasive tests for risk stratification are
used in clinical practice, as an identification of high-risk
patients in time is a desirable therapeutic goal. Significant
reduction of as high as 30-40 % annual mortality rate by
appropriate treatment has been reported.

During the last decade a lot of attention has been paid to
the investigation of the ventricular repolarization phase. The
parameters, reflecting left ventricular repolarization
prolongation and spatial inhomogeneity, mainly different
modifications of QT interval dispersion (QTD) measured
from the standard 12-lead ECG, have been reported to
possess considerable prognostic value for predicting sudden
death not only in post-myocardial infarction patients [1-3],
but also in patients with other forms of coronary artery
disease (CAD) [4,5] as well as in other pathological heart
conditions [6, 7]. Two [8, 9] large-scale epidemiological
studies published recently have shown that the QT interval
prolongation and dispersion are independent predictors of
outcome in large populations.

During recent years a dynamic property of ventricular
repolarization - QT interval variability (QTV) - has

undergone even more intensive investigation in order to
assess its utility for high risk patients’ identification.

Clinical and prognostic significance of temporal
variations of repolarization during 24 hours has been
evaluated since the middle of nineties still obtaining
controversial results [10-12]. It has been demonstrated that
in healthy subjects heart rate exhibits substantial beat-to-
beat variability (HRV), which is mirrored in the
instantaneous QT interval. In several pathological
conditions where the HRV is depressed due to withdrawal
of parasympathetic tone, the QT interval fluctuates widely
without any discernible relation to instantaneous heart rate.
The increased variability of the QT interval in response to
heart rate changes might reflect unstable ventricular
repolarization, which acts as a substance for ventricular
arrhythmias [13]. Algra et al. [14] demonstrated that
elevated (>25 ms) QTV over 24 hours was associated with
more than twofold risk of sudden death compared to
intermediate variation  (20-25 ms) values. Atiga et al. [15]
reported that temporal QT interval dispersion was the only
clinical variable (in addition all patients underwent spatial
QTD measurement, HRV, late potentials and T- wave
alternans registration, programmed ventricular stimulation)
that identified SD patients. The prognostic significance of
this parameter is augmented by the circumstance that the
increase in QT temporal variability already appears at early
stages of the disease. So, Berger et al [16] demonstrated in
ischemic and non-ischemic dilated cardiomyopathy patients
that significantly greater QTV prevailed among minimally
symptomatic patients with little or no further increase
among the patients with more severe stages of heart failure.

The surface T-wave is the result of spatial heterogeneity
in the action potential duration of cardiac cells.  During
recent years several new approaches for T-wave
morphology analysis have been proposed as an alternative
technique for high-risk patients identification, including the
area under T(U) wave determination [17], the technique of
principal components analysis [18, 19], determination of
spatial and temporal variations of T-wave morphology and
repolarization wavefront direction [20], etc. According to
the existing data [21], these variables seem to be
independent of heart rate and QT interval duration. At the
same time, it is generally accepted that the computer-aided
T-wave shape analysis is still in the experimental phase, so
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further effort is required in order to assess the clinically
relevant contents of the T-wave morphology [22].

The aim of the study was to compare predictive value of
different parameters calculated on the basis of T-wave in
patients with ventricular arrhythmia. A novel T-wave
detection algorithm for long term ECG signal evaluation is
proposed.

II. MATERIALS AND METHODS

Ninety-one persons, included in the study, were divided
into four groups according to the maximal Lown grade
ventricular arrhythmia at Holter monitoring.

The groups were as following:
Group O – grade 0 ectopy – no ventricular premature beats
at 24-hours ECG recording;
Group 3 A – grade 3 A ectopy – polymorphic ventricular
premature beats;

Group 4A - grade 4A ectopy – ventricular couplets;
Group 4B- grade 4B ectopy – ventricular tachycardia of 3 or
more beats.

Recordings were divided into four above-mentioned
groups by experienced cardiologist decision. Group 3A
included 33 patients (13 female and 20 male, mean age 52 ±
17), Group 4A - 18 patients (10 female and 8 male, mean
age 59 ± 12) and group 4B 13 patients (2 female and 11
male, mean age 56 ± 18). The fourth Group O (27 patients,
20 female and 7 male, mean age 29 ± 19) was the reference
group.

ECG was recorded using a 3-channel, 24-hour ECG
recorder (model RZ-152, Rozinn), frequency of
discretization 180Hz, resolution 10 bits. The full disclosure
of 24-hour signal from the same ECG channel (channel 0)
for every patient was chosen for further analysis.

Figure 1. Block diagram of ECG signal pre-processing algorithm

Analysis of the 24-hour recordings was performed with a
special algorithm presented on the Figure 1. The locations
of QRS complexes were first detected by algorithm
proposed by Tompkins [23]. Thereafter a template matching
subroutine was used to extract the normal complexes from
abnormal ones. T-wave parameters were calculated with the
help of polynomial fit (Givens algorithm, order 15) of T-
wave. Before the curve fitting the signal was filtered with
the high-pass filter to remove baseline wondering. The cut-
off frequency for the filter was 0.75Hz. The interpolated
FIR (IFIR) filter algorithm was used for that purpose. After

that the approximate T-wave search window was
determined from consequent RR interval. After completion
of the curve fitting procedure all peaks above 80% level
inside the window were detected and the first valid peak was
chosen to be T-wave apex.

Simultaneously the first derivative of polynomial fit of
T-wave was calculated and the first zero before and after the
T-apex were detected and named consequently as T-start
and T-end. Thereafter the maximum of derivative between
T-start and T-apex was calculated as the maximum slope of
T-wave rising phase (k1). A similar procedure was
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performed for maximal slope of falling phase of T-wave
(k2) calculation. After the removal of possible remaining of
DC shift from T-wave the areas under the wave were
calculated separately for rising and falling phase and named
consequently as S1 and S2. The algorithm was designed in
the signal processing environment LabVIEW.

For the final analysis of differences between the groups
two parameters were calculated for every patient from 24-
hour signal. The mean value of every parameter was
calculated and also the standard deviation of a population

based on a sample (STD) that represents the variability of
the parameter.

III. RESULTS

The results of the work are presented in Table 1 and 2.
The Student’s t-test was performed for statistical
comparison of differences between the groups and
calculated significance levels (p values) are presented in
Table 2.

TABLE I
Calculated mean and standard deviation values of parameters for different groups

0 N=27 3A N=33 4A N=18 4B N=13
Mean STD Mean STD Mean STD Mean STD

RT mean (ms) 204,95 18,38 208,08 27,4 218,53 25,85 216,42 33,55
RT STD 24,8 8,33 27,41 9,8 31,91 14,11 33,55 12,63
RTa mean (ms) 292,94 15,55 299,06 22,97 305,67 21,14 301,11 28,68
RTa STD 28,34 7,13 30,84 7,74 32,87 9,83 33,85 9,69
s1 mean (a.u.) 47091,6 19413,11 34879,24 34628,6 25555,39 13491,34 23128,59 12300,6
s1 STD 18795,04 5892,21 14510,83 8581,11 12452,83 4556,57 12807,13 6841,65
s2 mean (a.u.) 34689,58 11945,48 25927,28 16638,12 21021,34 11021,17 17653,33 8319,72
s2 STD 13238,94 3217,31 10539,03 3667,08 9988,96 4127,34 9133,57 3277,52
k1 mean (a.u.) 373,11 131,78 298,66 194,22 222,66 92,26 235,36 110,29
k1 STD 276,57 123,59 214,84 79,46 175,05 67 194,03 86,53
k2 mean (a.u.) 614,96 258,75 384,18 178,76 328,13 163,17 302,31 129,14
k2 STD 286,89 126,1 213,82 78,14 198,64 102,89 186,32 96,68

TABLE II
Statistical comparison of calculated parameters with two-tailed t-test

0&3A 0&4A 0&4B 3A&4A 3A&4B 4A&4B 0,3A&4A,4B 0,3A,4A&4B
p1 p2 p3 p4 p5 p6 p7 p8

RT mean 0,60100 0,06350 0,26600 0,18500 0,43400 0,85200 0,03660 0,24000
RT STD 0,26800 0,06490 0,03570 0,23900 0,13200 0,73800 0,01070 0,06250
RTa mean 0,22500 0,03630 0,35100 0,30700 0,82100 0,63100 0,07350 0,37700
RTa STD 0,19800 0,10300 0,08280 0,45500 0,33000 0,78500 0,03890 0,12500
s1 mean 0,09090 0,00007 0,00003 0,17800 0,09670 0,60700 0,00028 0,00226
s1 STD 0,02600 0,00020 0,01280 0,26900 0,48600 0,87200 0,00392 0,10300
s2 mean 0,02110 0,00031 0,00001 0,21300 0,03060 0,34000 0,00011 0,00064
s2 STD 0,00354 0,00821 0,00098 0,64000 0,21700 0,52500 0,00633 0,02040
k1 mean 0,08340 0,00005 0,00161 0,06450 0,17300 0,73800 0,00021 0,02860
k1 STD 0,03000 0,00093 0,01980 0,06470 0,46000 0,51500 0,00128 0,11500
k2 mean 0,00028 0,00004 0,00001 0,26400 0,09380 0,62700 0,00004 0,00119
k2 STD 0,01190 0,01360 0,00888 0,58900 0,37100 0,73600 0,01060 0,05590

IV. DISCUSSION AND CONCLUSIONS

The results of our study demonstrate that certain T-
wave morphology parameters, such as areas S1, S2 and
slopes k1, k2 possess significant prognostic capabilities for
predicting potentially life-threatening arrhythmias at Holter
monitoring. The area of the falling phase of T-wave (S2)
seems to be the most sensitive parameter in this set. The

only insignificant difference for S1 was recorded between
groups 4A and 4B, but nevertheless the strong tendency of
S1 decrease at higher arrhythmias grades was revealed. The
temporal parameters RT and RTa differ significantly in
Group 0 and 4 patients.

The utilization of the study results - non-invasive
analysis of temporal ventricular repolarization heterogeneity
and certain aspects of T-wave morphology - provides an



important tool for sudden death risk stratification and
assessment of antiarrhythmic drug treatment
benefits/drawbacks in patients with CAD.

These methods together with other non-invasive
methods of ventricular repolarization inhomogeneity
assessment may turn to be useful for identification of
patients with ventricular arrhythmias for invasive
electrophysiologic study, catheter ablation and implantable
devices treatment.
Thus, the results of our study demonstrate that several
parameters characterizing ventricular repolarization phase
on surface ECG appear to have strong correlation with the
level of myocardial electrical instability assessed at Holter
monitoring. The determination of the clinical significance of
these parameters requires further investigations.
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